منابع مشابه
buckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
Approximation Algorithms for Multiple Strip Packing
In this paper we study the Multiple Strip Packing (MSP) problem, a generalization of the well-known Strip Packing problem. For a given set of rectangles, r1, . . . , rn, with heights and widths ≤ 1, the goal is to find a non-overlapping orthogonal packing without rotations into k ∈ N strips [0, 1]× [0,∞), minimizing the maximum of the heights. We present an approximation algorithm with absolute...
متن کاملThermodynamic Consistency of the Anelastic Approximation for a Moist Atmosphere
The primary goal of this paper is to validate the use of the anelastic approximation for fluids with a complex equation of state such as moist air or seawater. The anelastic approximation is based on a leading-order expansion of the equations of motion for a compressible fluid in terms of density. Its application to atmospheric flows has been based on a dry framework that treats phase transitio...
متن کاملLevels of self-consistency in the GW approximation.
We perform GW calculations on atoms and diatomic molecules at different levels of self-consistency and investigate the effects of self-consistency on total energies, ionization potentials, and particle number conservation. We further propose a partially self-consistent GW scheme in which we keep the correlation part of the self-energy fixed within the self-consistency cycle. This approximation ...
متن کاملMaximal Strip Recovery Problem with Gaps: Hardness and Approximation Algorithms
Given two comparative maps, that is two sequences of markers each representing a genome, the Maximal Strip Recovery problem (MSR) asks to extract a largest sequence of markers from each map such that the two extracted sequences are decomposable into non-intersecting strips (or synteny blocks). This aims at defining a robust set of synteny blocks between different species, which is a key to unde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review
سال: 1964
ISSN: 0031-899X
DOI: 10.1103/physrev.135.b214